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Abstract. Hybrid quantum mechanical (QM) and mo-
lecular mechanical (MM) potentials are becoming
increasingly important for studying condensed-phase
systems but one of the outstanding problems in the field
has been how to treat covalent bonds between atoms of
the QM and MM regions. Recently, we presented a
generalized hybrid orbital (GHO) method that was
designed to tackle this problem for hybrid potentials
using semiempirical QM methods [Gao et al. (1998)
J Phys Chem A 102: 4714-4721]. We tested the method
on some small molecules and showed that it performed
well when compared to the purely QM or MM poten-
tials. In this article, we describe the formalism for the
determination of the GHO energy derivatives and then
present the results of more tests aimed at validating the
model. These tests, involving the calculation of the
proton affinities of some model compounds and a
molecular dynamics simulation of a protein, indicate
that the GHO method will prove useful for the appli-
cation of hybrid potentials to solution-phase macromo-
lecular systems.

Key words: Hybrid method — Analytic first
derivatives — Geometry optimization — Molecular
dynamics — Protein simulation

1 Introduction

Hybrid quantum mechanical (QM) and molecular
mechanical (MM) potentials have proved to be a
powerful tool for studying chemical reactions in solution
and in enzymes [1-3]. In the QM/MM approach, a QM
potential is used to study a small region of the system,
whereas the rest of the atoms are treated with an MM
potential. The QM region typically contains the atoms
that are involved in the chemical reaction and for which
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a knowledge of the changes in their electron density is
required, whereas the MM atoms act as the environment
to the QM region.

For solution-phase systems, in which the solutes are
the reacting species, the partitioning of the atoms be-
tween the QM and MM regions is straightforward and
there will be no molecules with atoms in both regions.
For enzymatic systems, however, some of the enzyme’s
amino acid residues typically take part directly in the
reaction and so will need to be treated quantum me-
chanically. This means that the enzyme will have atoms
in both the QM and MM regions and that there will be
covalent bonds between QM and MM atoms.

A number of schemes have been developed to treat
covalent bonds at the QM/MM boundary. An early and
still probably the most widely used approach is the
“dummy”- or “link’-atom method in which extra, un-
physical atoms are added to the QM region, one for each
QM/MM bond. These link atoms, usually hydrogens,
are placed at an appropriate distance from the QM at-
oms of the broken bonds and replace the MM atoms of
the broken bonds in the QM calculation [4, 5]. The link-
atom method is simple to implement and works rea-
sonably well but is not very elegant. More appealing
schemes dispense with the unphysical atoms and employ
hybrid orbitals. Warshel and Levitt [6] in their original
work used such a method. More recently, Rivail and
coworkers [7-10] developed a similar scheme, which they
call a local self-consistent field (LSCF) algorithm. Other
methods that have been developed include those by
Maseras and Morokuma [11], by Bersuker et al. [12], by
Bakowies and Thiel [13] and by Zhang et al. [14].

In a recent article we presented a generalized hybrid
orbital (GHO) method to treat the link-atom problem
for semiempirical QM potentials [15]. Our approach is
similar in spirit to the method of Rivail and coworkers
[7-10] in that atomic orbitals on a ““boundary” atom are
transformed into hybrid orbitals, some of which are
optimized in the self-consistent field (SCF), but is dif-
ferent in that the parameters needed in the definition of
the model are transferable. In our original study [15], we



tested the method on a series of hydrocarbon model
compounds and showed that it yielded reasonable
structural, energetic and electronic results in comparison
with the results from the corresponding QM and MM
methods. In this article, we describe the procedure for
calculating analytically the first derivatives of the energy
within the GHO formalism and present the results of
computed proton affinities and molecular dynamics
simulations of the SH2 domain in water. Although it
would, in principle, be possible to calculate the deriva-
tives numerically as is the case in some semiempirical
QM programs, it is clear to us that analytic evaluation
will be more precise and much less costly than numerical
evaluation, particularly for cases in which there are large
numbers of atoms in the MM region.

The outline of this article is as follows. The main
features of the GHO model and the expressions for the
derivatives within the GHO formalism are summarized
in Sect. 2. The results of our calculations using the GHO
model are presented in Sect. 3 and Sect. 4 concludes
with a summary of the present work.

2 Methods

The GHO model was introduced and described in Ref. [15]. Here,
the GHO model is briefly outlined before the derivatives of the
GHO energy expression are presented.

2.1 The GHO model

In the GHO model the boundary atom in the MM region that is
directly linked to the QM atom is represented by a set of four or-
thogonal hybrid orbitals {nq,#a,%s,nc}, Where the subscript Q
denotes the orbital that forms a ¢ covalent bond with the QM atom
(Fig. 1). The other three orbitals (1,73, 7c) are auxiliary orbitals
that point roughly in the directions of the three MM atoms A, B and
C. These orbitals do not participate in the SCF optimization pro-
cedure but they are included in the calculation of the effective
Hamiltonian matrix.

Fig. 1 A schematic diagram showing the generalized hybrid orbital
(GHO) model applied to a covalent bond between an atom of the
quantum mechanical (QM) region and an atom of the molecular
mechanical (M M) region. O is the boundary atom to which the
GHO model is applied. It is linked to the quantum atom Q and to
the MM atoms A4, B and C. The hybrid orbitals on the boundary
atom are #q, 115, g and 7¢. g points towards Q and is optimized
in the self-consistent-held calculation. The remaining orbitals point
towards the MM atoms, A, B and C, and are not optimized
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In the following discussion, for clarity, we consider the case
where there is only one boundary atom that is connected to the QM
fragment. Generalization to systems containing more than one
boundary atom is straightforward. The QM fragment is assumed to
have N atomic orbital basis functions {&,, u=1,...,N}, which
together with the orbital 5, of the boundary atom constitute the
active orbital basis set for the SCF calculation. The molecular
orbitals (MOs) of the system, d),].", are linear combinations of these
N + 1 functions:

Zcﬂ,fﬂ—i-ch]Q , (1)

n=

where the subscript 7 runs from 1 to N 4+ 1 and the superscript H
emphasizes the fact that the MOs are formed from a hybrid orbital
basis set.

To construct the Fock matrix, the density matrix in the hybrid
orbital basis set PY is expanded so that the densities of the auxiliary
orbitals are included as extra diagonal elements. This generates a
new density matrix, P, of dimension (N +4) x (N +4), where we
have used the subscrlpt t to denote the larger dimension. This
density is then transformed into the density matrix in the standard
atomic orbital basis, P , using the transformation matrix, T:

PO = (1) P (17) . k)

The Fock matrix, F, A0 1s obtained as usual from the atomic
orbltal density matrlx P , and an effective one-electron matrix,
HC , which contains contrlbutions from the auxiliary orbitals [15].

The energy of the QM/MM system is expressed in terms of the
atomic orbital basis as follows:
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+ER o+ BN B (3)
where the first two terms are the QM/MM electronic energy, the
third term is the nuclear repulsion energy for the QM nuclei, the
fourth term is the QM nuclei/MM atom electrostatic and Lennard-
Jones interaction energy and the last term is the energy of the atoms
in the MM region.

2.2 Definition of the transformation matrix

It is convenient to write the transformation matrix as a product of a
hybridization matrix, H, in a local coordinate system and a rotation
matrix, B, that effects the transformation from the local coordinate
system to the molecular coordinate system:

T=BH . 4

Because of the neglect of differential diatomic overlap (NDDO)
approximation that is used in semiempirical calculations, the ma-
trix T will be equal to the identity matrix, I, except at the boundary
atoms. For the case of one boundary atom T can be written as

(3 8).

where Ty, is a 4 x 4 matrix corresponding to the four orbitals of the
boundary atom. Ty, is used to obtain a set of hybrid orbitals on the
boundary atom that point approximately towards the other atoms
to which the boundary atom is bound:

Ule} s
LN —1| Px

—(T , 6
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Ule P:

where the orbitals s, p., p, and p. are the valence orbitals of the
boundary atom.

We begin by discussing the definition of the local coordinate
system shown in Fig. 1, which determines the direction of the hy-
brid orbitals and the matrix B. In what follows we use the sub-
scripts 1, 2 and 3 to denote the three Cartesian coordinates in the



338

molecular frame and the vectors x, y and z to denote the three
directional unit vectors in the local coordinate system. The vector x
is taken to be orthogonal to the plane o that is defined by the three
unit vectors a, b and ¢ that point from the boundary atom, O, to the
MM atoms A, B and C, respectively. The active hybrid orbital,
which does not necessarily coincide with the covalent bond between
the boundary atom and the QM atom Q is placed along the vector
x towards Q. The vector z is chosen to be perpendicular to the
plane containing the vectors x and a. The direction of y is defined
by the vector cross product of z and x, i.e. y =z ® X.
The rotation matrix By is defined by the directional cosines of
the local coordinates as
1 0 0 0
_ |0 x o»o=
By 0 x2 » 2|~ )
0 x3 » z3
The hybridization matrix, Hp, should yield four orthonormal hy-

brid orbitals. This is conveniently done by using the local geometry
of the three MM atoms attached to the boundary atom:

¢ GNI GV GVE
CP _C.v/\/§ _C.v/\/§ _C.v/\/§ (8)
0 V273 =16 =16 |7

0 0 12 —J/i)2

H, =

where the coefficients C; and C, represent the s- and p-orbital
components in the hybrid orbitals. An equal partition of the p
orbital is assumed in constructing the matrix in Eq. (8). For the
hybrid orbital 5, C is proportional to the distance, L, between the
atom O and the plane « and satisfies the relationship, C?/C2 = L.
Along with the normalization condition C; + C; = 1, we obtain

L

L+1 ®)

Sy w

The projection distance, L, between the boundary atom and the
plane o is given by

L=—afx = —bfx = —¢'x (11)

C =

2.3 Derivatives of the GHO energy expression

The gradients of the energy are found by taking the partial deriv-
atives of the energy expression of Eq. (3) with respect to the Car-
tesian coordinates of the atoms in the system. For atoms that are
not directly connected to the boundary atom and for the QM atom
Q which is connected to the boundary atom, the gradients can be
obtained in the normal way because the partial derivatives of T
with respect to the coordinates of these atoms are zero. For the
three MM atoms A, B and C and the boundary atom O, there is an
extra term involved due to the dependence of the density matrix
on T. The derivatives for these atoms can be written as:

: N+44/pAO
OE OEMF  TROP,
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woo

(12)

where ¢; specifies one of the Cartesian coordinates of the atoms A,
B, C and O and the superscript HF indicates the normal derivatives
of the Hartree—Fock energy expression obtained in the atomic
orbital basis.

The second term of Eq. (12) occurs because the SCF calculation
is carried out in the GHO basis of N + 1 functions which depends
on T. From Eq. (2), the derivatives of the density matrix are

0 ASITG B ot
6:11- - (a%’) P + (1)
GPE{ ~1 BN Ha(Til)
R 13

The first and third terms on the right-hand side of this equation
involve the derivatives of the transformation matrix, explicit ex-
pressions for which can be found in the Appendix. The second term
involves the partial derivatives of the density matrix in the GHO
basis PIH, which is the matrix that is determined in the SCF pro-
cedure. The derivatives of this matrix do not contribute to the total
derivatives for the same reason that the derivatives of the density
matrix in a normal NDDO Hartree-Fock calculation do not
contribute.

3 Results

We performed two sets of calculations to test the GHO/
derivative method. The first concerned the proton
affinities of a series of small molecules and were designed
to test the perturbations induced by the GHO method
on the electronic structure of the system. The second
involved the comparison of two molecular dynamics
simulations of a small protein in water, one using a
purely MM potential and the second a QM(GHO)/MM
hybrid model. Both sets of tests employed the GHO
model as implemented in the CHARMM molecular
modeling program [16]. The AM1 semiempirical method
of Dewar et al. [17] was used to treat the quantum atoms
and the CHARMM all-atom force field [18] for the MM
atoms. We discuss each set of calculations separately.

3.1 Proton affinity

The calculation of the proton affinities of organic bases
provides a stringent test of the accuracy of the
QM(GHO)/MM method in comparison with the corre-
sponding QM model. Following Dewar and Dieter [19],
who provided an extensive list of experimental and
AMI-derived proton affinities, the proton affinity of a
basic compound, B, is defined as the negative value of
the enthalpy of reaction at 25 °C for the protonation
reaction:

Proton affinity (B) = AHy(H") + AH¢(B) — AHy(HB") .
(14)

Following the procedure in Ref. [19], we calculate all the
quantities in Eq. (14) except for the heat of formation of
the proton, AHy(H"), which is poorly estimated by the
AMI1 method. Instead, we use the experimental value
of 365.7kcalmol™!, which is also the value adopted
by Bakowies and Thiel [13] for their proton affinity
calculations. This value differs by a small amount from
the value originally used by Dewar and Dieter
(367.2 kcal mol ™) [19].

We determined the proton affinities for three different
sets of model compounds — carboxylate anions, alcoxide
ions and primary amines and their anions — that were
chosen because they contain functional groups occurring
in the side chains of amino acids. In the cases where the
molecules were large enough, we partitioned them into
different QM and MM regions so that the influence of
the size of the QM fragment could be systematically
investigated as the boundary atom moved away from the
protonation site. Almost all the compounds we chose



were in the set of Dewar and Dieter [19] and some of
them were also studied by Field et al. [5] and by
Bakowies and Thiel [13].

The results of our calculations are displayed in
Tables 1-3 along with the experimental data [19], the
results using a link-atom approach [5] and the results
obtained with the AM1 method. We performed the last
two sets of calculations using the current implementa-
tion of the link-atom and the AMI1 semiempirical
methods in the CHARMM program [16] and so, as a
result, the numbers we obtain may differ slightly from
those reported in Refs. [5, 19]. The structures of all
deprotonated and protonated species used to calculate
the proton affinities in the tables were fully geometry
optimized at the relevant level of theory.

For the carboxylate and alcoxide anions, the GHO
method gives results which are of equivalent accuracy to
those of AMI1, whereas the link-atom method gives
values with larger errors. For the amine anions, the
GHO method gives slightly poorer results than those of
AMI1, but it still performs better than the link-atom

Table 1. Proton affinities for carboxylate anions. The experimental
values are taken from Ref. [19]. The values for the AMI,
generalized hybrid orbital (GHO) and link-atom orbital (LA)
calculations were all obtained using the CHARMM program [16].
All energies are in kilocalories per mole. The symbol * indicates the
boundary atom for the GHO calculations or the atom which is
replaced by the LA in the LA quantum mechanical (Q M) molecular
mechanical (MM) calculations. Atoms on the right of C* are
treated quantum mechanically

Acids GHO LA AM1  exp.

H;C*—CO; 349.9 3553 3533 3485
CH;—H,C"—CO; 352.6 3562 3525 3473
H;3;C*—CH,—CO; 3519 3551 3525 3473
CH;—H,C"—CH,—CO; 353.3 3557 3522  346.6
H;3;C*—CH,—CH,—CO; 3519 3535 3522  346.6
(CH3),—HC*—CO,; 3564  357.0 351.8 3463
H;3;C*—CH(CH3)—CO; 351.0 3545 351.8 3463

Table 2. Proton affinities for alcoxide anions. The experimental
values are taken from Ref. [19]. The values for the AM1, GHO and
LA calculations were all obtained using the CHARMM program
[16]. All energies are in kilocalories per mole. The symbol * indicates
the boundary atom for the GHO calculations or the atom which is
replaced by the LA in the LA QM/MM calculations. Atoms on the
right of C* are treated quantum mechanically

Alcohols GHO LA AMI1  exp.

H;C*—H,C—0" 383.2 385.1 3829 376.1
CH;—H,C*—CH,—0" 3858 3854 381.5 3747
H;C*—CH,—CH,—0" 381.7 384.6 381.5 3747
H;C*—CH(CH;)—O~ 384.6 387.0 384.5 374.1
(CH3),—HC"*—O~ 411.1 422.8 3845 374.1
(H3;C*)—C(CH;),—0O" 383.1 3859 383.1 3733
(CH;3),—C*—0O~ 415.8 438.7 383.1 3733
(CH3),—C"—CH,—0"~ 393.1 387.2 381.0 372.1
H;C*—C(CH3),—CH,—0O"~ 380.8 3839 381.0 372.1
H;C*—CH,—CH,—CH,—0" 382.7 383.8 3827 3752
CH;—H,C"*—CH,—CH,—O" 384.5 3873 3827 3752
para H;C*—CgHs—O~ 3451 349.5 3463 3509
para CH;—H,C*—C¢H4—O~ 346.7 349.8 346.0 3499
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Table 3. Proton affinities for amines and their anions. The
experimental values are taken from Ref. [19]. The values for
the AMI1, GHO and LA calculations were all obtained using the
CHARMM program [16]. All energies are in kilocalories per mole.
The symbol * indicates the boundary atom for the GHO
calculations or the atom which is replaced by the LA in the LA
QM/MM calculations. Atoms on the right of C* are treated
quantum mechanically

Amines GHO LA AM1  exp.

H;C*—NH™ 416.8 433.3 4049 4032
CH;—H,C*—NH"~ 4219 4344 4042 3994
H;C*—CH,—NH"~ 414.5 407.5 4042 3994
CH;—H,C"*—CH,—NH"™ 407.5 409.3 402.8 3984
H;C*—CH,—CH,—NH" 403.0 407.0 402.8 3984
H;C*—NH, 202.9 2144 209.5 214.1
CH;—H,C"—NH, 2043 213.6 2135 217.0
H;C*—CH,—NH, 212.6 2123 2135 217.0
CH;—H,C*—CH,—NH, 211.4 2145 2149 2179
H;C*—CH,—CH,—NH, 212.6  212.7 2149 2179
CH;—CH,—H,C"—CH,—NH, 210.6 214.0 2152 2184
CH;—H,C*—CH,—CH,—NH, 213.1 214.1 2152 218.4

method. The only case where the link-atom method has
an advantage is for the amines, but here the differences
between the two methods become less important as the
size of the QM region is increased. In general, the data in
the tables show that the errors in the proton affinities are
largest for those systems in which the boundary atom is
either directly connected to the atom that is being
protonated or is separated from it by only one other
atom. When the boundary atom is separated by at least
three bonds from the protonation site, the GHO results
have a mean unsigned error of 0.9 kcal mol™" (for the 13
such cases in the tables). The corresponding error for the
link-atom results is 2.8 kcal mol~!. This confirms that
the QM region should be reasonably large to avoid the
artefacts introduced by the boundary atoms and indi-
cates that the choice of the GHO boundary atom should
be at least two atoms away from the reactive center
involving bond forming and breaking.

3.2 Molecular dynamics simulations
of an SH?2 protein domain

To test the GHO method for applications to protein
systems, we carried out molecular dynamics simulations
of the SH2 domain of the human p56’* tyrosine kinase
protein complexed to an 1l-residue phosphotyrosyl
peptide. The SH2 domain consists of about 100 amino
acid residues, which binds phosphotyrosine-containing
amino acid sequences with high affinity and specificity.
These domains are of great interest because they are
intimately involved in cellular signal transduction path-
ways.

For our simulations we used the SH2-domain struc-
ture of Eck et al. [20] (Protein Data Bank, PDB code
1LCJ [21]), which consists of two chains, the 104-residue
SH2 domain (PDB numbering 123-226) and an 11-res-
idue peptide that contains a phosphotyrosyl residue
(pY). Starting from the PDB structure, we built the
hydrogens using the HBUILD algorithm [22] in the
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CHARMM program and solvated the protein by im-
mersing it in a preequilibrated cubic box of water mol-
ecules of side 56.1 A and deleting all water molecules
whose oxygens were less than 2.8 A from any non-hy-
drogen protein atom. The final system had about 16900
atoms — 1850 protein atoms and 5020 water molecules.
The solvated system was then refined by minimizing its
geometry with a conjugate-gradient algorithm and
treating the entire system with the CHARMM?22 MM
force field.

We performed two molecular dynamics simulations
at a temperature of 298 K. The first was a purely MM
simulation of 1-ns duration. The second was a hybrid
potential simulation of 500-ps duration in which the side
chain of the phosphotyrosyl residue, which is bound at
the SH2-domain bonding site, was chosen as the QM
region and the Cf atom of the side chain as the GHO
boundary atom. The MM simulation was started from
the minimized protein/water box structure described
earlier, whereas the starting structure for the hybrid
potential simulation was taken from the MM simulation
at 600 ps after the MM simulation had equilibrated. For
each simulation, the Nosé constant temperature algo-
rithm was used [23] with an integration timestep of 1 fs.
The non-bonding interactions were treated using a
minimum-image group-switching approximation in
which the switching function was applied between 8 and
12 A.

To illustrate the general behavior of the dynamics
with the MM potential, we show the root-mean-square
coordinate deviations (RMSCDs) between the crystal-
lographic structure and the structures produced during
the simulation as a function of time in Fig. 2. The
RMSCD slowly increases until a plateau value of about
2.5 A is attained at 600 ps. These RMSCD values are
similar to those found by Feng et al. [14], who per-
formed a molecular dynamics simulation on a related
SH2-domain protein.

That the structures obtained in the last 400 ps of the
MM dynamics are reasonable can be seen by comparing
the calculated and experimental isotropic B factors that
are shown in Fig. 3. The agreement between the two is,

rms/A
2.6

2.4
22

2
1.8
1.6
1.4
1.2

: ps

200 400 600 800 1000

Fig. 2 A plot of the root-mean-square coordinate deviations
(RMSCDs) as a function of time for the trajectory produced using
the MM potential. The RMSCDs were calculated between the
structures along the MM trajectory and the crystallographic
structure using the backbone atoms only
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Fig. 3 The calculated (dotted line) and experimental (solid line)
isotropic B factors for the Co atoms of the SH2 protein. The
calculated values were obtained from the structures of the last
400 ps of the 1-ns MM potential molecular dynamics simulation

in general, excellent. We highlight two regions for special
attention. First, there is a small loop in the SH2 domain,
comprised of residues 142—-147, for which the MM sim-
ulation overestimates the B factors. This can be ex-
plained because the loop interacts with a neighboring
protein molecule in the crystallographic structure but is
free to move in solution in the simulation. Second, the
MM simulation severely underestimates the fluctuations
in the region immediately around the phosphotyrosyl
residue.

Similar plots for the trajectory generated with the
hybrid AM1/CHARMM?22 potential are shown in
Figs. 4 and 5. The RMSCD between the hybrid poten-
tial simulation and the crystallographic structures
reaches a plateau value of about 2.5 A, which is similar
to that of Fig. 2, but this value is attained more rapidly
than in the pure MM simulation because the starting
structure was already well equilibrated. Similarly, the B
factors are in excellent agreement with the experimental
values, although the fluctuations in the SH2-domain
loop region around residue 145 are much larger. In
contrast, however, the fluctuations for the region pY — 2

rms/A

y i N

22

1.8
1.6

- . t/ps
100 200 300 400 500

Fig. 4 A plot of the RMSCDs as a function of time for the
trajectory produced using the hybrid potential. The RMSCDs were
calculated between the structures along the QM/MM trajectory
and the crystallographic structure using the backbone atoms only
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Fig. 5 The calculated (dotted line) and experimental (solid line)
isotropic B factors for the Co atoms of the SH2 protein. The
calculated values were obtained from the structures of the last 400 ps
of the 500-ps hybrid potential molecular dynamics simulation

to pY + 4 are much better reproduced than in the MM
simulation.

Of particular importance in the binding of the pep-
tide to the SH2 domain is a hydrogen-bond network
around the phosphotyrosyl residue, which has been de-
scribed in detail by Eck et al. [20]. Two arginines play
critical roles — R134, which has one hydrogen bond with
a phosphate oxygen, and R154, which has two. An
analysis of the hydrogen-bond network around the
phosphate ion during the hybrid potential simulation
shows that there are hydrogen bonds between both ar-
ginines and the phosphate for about 85% of the time. In
addition, there are five water molecules which have hy-
drogen bonds to the phosphate for over 65% of the time
and a sixth water molecule which has a hydrogen bond
with the phosphate for about 35% of the time. The
positions of all these water molecules remain approxi-
mately constant during the course of the simulation and
there is no exchange with the water molecules of the
bulk solvent.

A similar analysis of the hydrogen-bond network in
the MM simulation reveals that R154 has a hydrogen
bond with the phosphate for over 95% of the trajectory
structures, whereas R134 has no hydrogen bonds at all
with the phosphate. Instead, the binding pocket has
been deformed so that there are seven water molecules
with hydrogen bonds to the phosphate, four for over
95% of the time and three for between 75 and 95% of
the time. These observations help to explain that the B
factors of the atoms around the phosphotyrosyl residue
are so small in the MM simulation because the phos-
phate is locked into the binding pocket by an over-
strong series of hydrogen bonds. In the QM/MM
simulation, however, the hydrogen-bond network is less
rigid and allows the pY residue more flexibility. The
reason for this difference is no doubt due to the different
potentials used to treat the highly charged phosphate
group. The nonpolarizable MM potential overestimates
the charge—charge interactions between the phos-
phateand the water molecules, whereas the hybrid
potential, because it permits polarization of the phos-
phate group, provides a more realistic description of
these interactions.
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4 Conclusions

In this article we have extended the GHO method
developed in our earlier work [15] by explaining how
the GHO energy derivatives can be calculated and by
performing more stringent tests of the method’s preci-
sion. We have shown that the GHO method is
applicable to the study of large macromolecular systems
and is as accurate as the link-atom method that has
been the most widely used method to date for hybrid
potential studies. In contrast to the link-atom method,
however, the GHO method does not introduce spurious
atoms into the QM region and results in a well-defined
potential-energy surface for the system. It also has the
advantage over the LSCF method in that it does not
need to be reparameterized for each new system.
Although the GHO works well, it can be improved. In
particular, we would like to refine the way in which the
charges on the MM atoms at the interface are handled
and we are working on a way of extending the method
which is appropriate to ab initio QM wavefunctions. In
summary, we feel that the GHO method will provide a
useful complement to other methods that exist for
tackling the “boundary-atom” problem and will find an
important role when applying hybrid QM/MM poten-
tial techniques to the study of biomacromolecular
systems.
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Appendix

In this appendix we give explicit expressions for the
derivatives of the transformation matrix, T, and its
inverse, T~'. From Eq. (4), it is clear that the derivatives
of T can be expressed in terms of the derivatives of the
matrices B and H:
LN ML
aq, 6q, aq,
The derivatives of T~! can also be expressed in terms of
the derivatives of B and H because the inverses of B and
H are B and H', respectively. Thus

T'=BH) '=H 'B' =H'B . (A2)

To determine the derivatives of the matrices B and H we
suppose that the atom O is at the origin and that the unit
vectors along the three boundary atom/MM atom bonds
can be written as

(A1)

A B C
1 1 1
a=— AZ ) b = — B2 , C€=— C2 )
R Ry Rc
A3 B3 G
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where A4;, B; and C; are Cartesian coordinates for atoms
A, B and C, respectively, and Ra, Rg and R¢ refer to
bond distances between these atoms and the boundary
atom.

The three unit vectors defining the local coordinate
system are

1 1
x=—boct+e®at+taxdb) =—X,X,X3) (A4)
RX RX
1= (x@a) = (2,25, 2) (AS5)
=%, =R, L s
Y=ZXX , (A6>

where Ry =|X| and Rz =|Z|. Note that vectors in
capital letters are unnormalized vectors.
The derivatives of the B matrix are

o 0 0 O

;. w0z

0B, 0 dq;  9q;  0g;
6% dq;  Oq; 0g;
0 & s 0

9q; dq;  0Og;

where g; represents one of the coordinates of the atoms
A, Bor C.

For implementation purposes, we found it convenient
to express these partial derivatives as

o _ 0 (X\_ 105 X
aqiiaqi R)( 7RX aq, R)3(

0X] 9.6} 0X;3
X <X1 o4 —l—Xza—qi—l-Xj, aq[) (AS)
dg; 0g¢; \Rz) Rz03q R}
07, 07, 073
V4 V4 V4 A9
X(la%Jrza%‘Jr}a%‘) (A9)
0y; 0z ox
he/ A il ; 17 . Al0
0q; [a%‘ ®x} U+ {Z® @qi] U) (AL0)

In these equations, the lower-case variables correspond
to unit vectors and the upper-case variables to the
quantities defined in Eqs. (A4)—(A6). The indices i and j
specify a Cartesian coordinate and an index in paren-
thesis (j) means the jth element of the cross product of
two vectors.

The derivatives in Eq. (A8) can be expressed as fol-
lows:

oX; A [A9B()) C®A()

04;  Ri | RaRs RcRA
ik | Ce_ Bi (A1)
Ra [Rc  Rp

oX; B [BoC(j)  A®B())

0B; Ry | ReRc RaRg
Gk | Ae _ Co (A12)
Rg |Ra  Rc

X, G [CoAy)
RBRC

B B ® C(J)
oC; B ch RcRA

+@_/k{ﬁ_ﬂ} (A13)

Rc |[Rp R

where ¢€;; is the standard permutation symbol with the
definition

et = +1 if ijk is an even permutation of 1,2,3
= —11ifijkis an odd permutation of 1,2,3

= 0 otherwise . (A14)
The gradient 0Z;/0g; can be expressed as
aZ] aX R aa .
= |wal i)+ ka0 (A13)

The derivatives of the vector x occurring in this
expression have already been defined in Eq. (AS),
whereas the derivatives of the vector a are easy to
determine from the definition of Eq. (A3).

The only derivatives that are required for the H
matrix are those of L with respect to the coordinates of
the atoms O, A, B and C and these may also be deter-
mined straightforwardly using the definition of Eq. (11)
and the expressions for the derivatives of the vectors
x and a.

This completes the formulation of the derivatives
except to say that the presented formulae assume that
the boundary atom is at the origin. To generalize to the
case where the boundary atom is elsewhere requires a
simple, linear transformation of coordinates and an
application of the product rule. This results in identical
derivative expressions for the atoms A, B and C and
derivative expressions for the boundary atom that are
the negative of the sum of the derivative expressions for
the atoms A, B and C.
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